Hafnium oxide deposition (CVD): Difference between revisions
Line 29: | Line 29: | ||
HfO<sub>2</sub>, HCl | HfO<sub>2</sub>, HCl | ||
Since HfCl<sub>4</sub> is a solid salt at room temperature, we dissolve it in [https://en.wikipedia.org/wiki/Cyclohexane Cyclohexane] (C<sub>6</sub> H<sub>11</sub>) and use direct liquid injection for using it in our CVD as the precursor. | Since HfCl<sub>4</sub> is a solid salt at room temperature, we dissolve it in [https://en.wikipedia.org/wiki/Cyclohexane Cyclohexane] (C<sub>6</sub> H<sub>11</sub>), with a concentration range of 0.01-1.0M, and use direct liquid injection for using it in our CVD as the precursor. | ||
The waste result is hydrochloric acid, CO<sub>2</sub> and H<sub>2</sub>O which needs, to be continuously flushed out with a gas like Argon | The waste result is hydrochloric acid, CO<sub>2</sub> and H<sub>2</sub>O which needs, to be continuously flushed out with a gas like Argon |
Revision as of 06:20, 12 October 2022
The base of this chemical recipe and processing is Hafnium-Tetrachloride, as it can be seen in the picture.
You might notice that Hafnium-Tetrachloride is a solid crystal at room temperature, which is kind of a problem considering that we wanna use it as a vapor in our CVD furnace, in order to react it with oxide for obtaining a Hafnium-Oxide thin film layer.
The equipment required for this process are a CVD and a plasma cleaner for removing impurities after the Hafnium oxide deposition
Chemical properties of Hafnium-Tetrachloride
HfCl4 can be produced by several related procedures:
- The reaction of carbon tetrachloride and hafnium oxide at above 450 °C;
- HfO2 + 2 CCl4 → HfCl4 + 2 COCl2
- Chlorination of a mixture of HfO2 and carbon above 600 °C using chlorine gas or sulfur monochloride:
- HfO2 + 2 Cl2 + C → HfCl4 + CO2
- Chlorination of hafnium carbide above 250 °C.
The result of those chemical reactions is a crystalline powder with a melting point of 432 °C
Processing steps
The basic reaction we want to make use of, according to https://patents.google.com/patent/CN100356519C/en (original Chinese version: https://patents.google.com/patent/CN100356519C), is as following:
HfCl4 + C6 H11 → HfO2, HCl
Since HfCl4 is a solid salt at room temperature, we dissolve it in Cyclohexane (C6 H11), with a concentration range of 0.01-1.0M, and use direct liquid injection for using it in our CVD as the precursor.
The waste result is hydrochloric acid, CO2 and H2O which needs, to be continuously flushed out with a gas like Argon
Links
Study HfO2 formation: https://iopscience.iop.org/article/10.1149/MA2005-02/13/547/pdf